병렬 컴퓨팅(parallel computing) 또는 병렬 연산은 동시에 많은 계산을 하는 연산의 한 방법이다. 크고 복잡한 문제를 작게 나눠 동시에 병렬적으로 해결하는 데에 주로 사용되며, 병렬 컴퓨팅에는 여러 방법과 종류가 존재한다. 그 예로, 비트 수준, 명령어 수준, 데이터, 작업 병렬 처리 방식 등이 있다. 병렬 컴퓨팅은 오래전부터 주로 고성능 연산에 이용되어 왔으며, 프로세서 주파수의 물리적인 한계에 다가가면서 문제 의식이 높아진 이후에 더욱 주목받게 되었다. 최근 컴퓨터 이용에서 발열과 전력 소모에 대한 관심이 높아지는 것과 더불어 멀티 코어 프로세서를 핵심으로 컴퓨터 구조에서 강력한 패러다임으로 주목받게 되었다.병렬 컴퓨터들은 대체적으로 하드웨어의 병렬화 방법에 따라 분류된다. 클러스터, MPP, 그리드는 여러 컴퓨터에서 한 가지 작업을 하도록 설계되었다. 멀티 코어나 멀티 프로세서 컴퓨터들은 여러 개의 처리 요소(CPU 등)을 한 기기에 탑재하고 작업한다.

PropertyValue
dbpedia-owl:abstract
  • 병렬 컴퓨팅(parallel computing) 또는 병렬 연산은 동시에 많은 계산을 하는 연산의 한 방법이다. 크고 복잡한 문제를 작게 나눠 동시에 병렬적으로 해결하는 데에 주로 사용되며, 병렬 컴퓨팅에는 여러 방법과 종류가 존재한다. 그 예로, 비트 수준, 명령어 수준, 데이터, 작업 병렬 처리 방식 등이 있다. 병렬 컴퓨팅은 오래전부터 주로 고성능 연산에 이용되어 왔으며, 프로세서 주파수의 물리적인 한계에 다가가면서 문제 의식이 높아진 이후에 더욱 주목받게 되었다. 최근 컴퓨터 이용에서 발열과 전력 소모에 대한 관심이 높아지는 것과 더불어 멀티 코어 프로세서를 핵심으로 컴퓨터 구조에서 강력한 패러다임으로 주목받게 되었다.병렬 컴퓨터들은 대체적으로 하드웨어의 병렬화 방법에 따라 분류된다. 클러스터, MPP, 그리드는 여러 컴퓨터에서 한 가지 작업을 하도록 설계되었다. 멀티 코어나 멀티 프로세서 컴퓨터들은 여러 개의 처리 요소(CPU 등)을 한 기기에 탑재하고 작업한다. 특수화된 병렬 컴퓨터 구조들은 가끔씩 고전적인 프로세서들과 함께 특정한 작업을 가속화 시키는 목적으로도 사용된다.병렬 컴퓨터 프로그램들은 순차적 프로그램보다 난해하다. 왜냐하면 동시처리는 여러 종류의 새로운 잠재적 소프트웨어 버그를 가지고 있기 때문이다. (경쟁 상태가 가장 흔하다) 통신과 동기화 를 요구하는 다른 하위 작업들은 병렬 프로그램 성능의 전형적인 방해요소다. 병렬화된 프로그램의 속도 향상은 암달의 법칙에 의해서 그 결과가 결정된다.
  • 병렬 컴퓨팅(parallel computing) 또는 병렬 연산은 동시에 많은 계산을 하는 연산의 한 방법이다. 크고 복잡한 문제를 작게 나눠 동시에 병렬적으로 해결하는 데에 주로 사용되며, 병렬 컴퓨팅에는 여러 방법과 종류가 존재한다. 그 예로, 비트 수준, 명령어 수준, 데이터, 작업 병렬 처리 방식 등이 있다. 병렬 컴퓨팅은 오래전부터 주로 고성능 연산에 이용되어 왔으며, 프로세서 주파수 의 물리적인 한계에 다가가면서 문제 의식이 높아진 이후에 더욱 주목받게 되었다. 최근 컴퓨터 이용에서 발열과 전력 소모에 대한 관심이 높아지는 것과 더불어 멀티 코어 프로세서를 핵심으로 컴퓨터 구조에서 강력한 패러다임으로 주목받게 되었다.병렬 컴퓨터들은 대체적으로 하드웨어의 병렬화 방법에 따라 분류된다. 클러스터, MPP, 그리드는 여러 컴퓨터에서 한 가지 작업을 하도록 설계되었다. 멀티 코어나 멀티 프로세서 컴퓨터들은 여러 개의 처리 요소(CPU 등)을 한 기기에 탑재하고 작업한다. 특수화된 병렬 컴퓨터 구조들은 가끔씩 고전적인 프로세서들과 함께 특정한 작업을 가속화 시키는 목적으로도 사용된다.병렬 컴퓨터 프로그램들은 순차적 프로그램보다 난해하다. 왜냐하면 동시처리는 여러 종류의 새로운 잠재적 소프트웨어 버그를 가지고 있기 때문이다. (경쟁 상태가 가장 흔하다) 통신과 동기화 를 요구하는 다른 하위 작업들은 병렬 프로그램 성능의 전형적인 방해요소다. 병렬화된 프로그램의 속도 향상은 암달의 법칙에 의해서 그 결과가 결정된다.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 386222 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 16664 (xsd:integer)
  • 16699 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 107 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 11742152 (xsd:integer)
  • 14760807 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ko:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 병렬 컴퓨팅(parallel computing) 또는 병렬 연산은 동시에 많은 계산을 하는 연산의 한 방법이다. 크고 복잡한 문제를 작게 나눠 동시에 병렬적으로 해결하는 데에 주로 사용되며, 병렬 컴퓨팅에는 여러 방법과 종류가 존재한다. 그 예로, 비트 수준, 명령어 수준, 데이터, 작업 병렬 처리 방식 등이 있다. 병렬 컴퓨팅은 오래전부터 주로 고성능 연산에 이용되어 왔으며, 프로세서 주파수의 물리적인 한계에 다가가면서 문제 의식이 높아진 이후에 더욱 주목받게 되었다. 최근 컴퓨터 이용에서 발열과 전력 소모에 대한 관심이 높아지는 것과 더불어 멀티 코어 프로세서를 핵심으로 컴퓨터 구조에서 강력한 패러다임으로 주목받게 되었다.병렬 컴퓨터들은 대체적으로 하드웨어의 병렬화 방법에 따라 분류된다. 클러스터, MPP, 그리드는 여러 컴퓨터에서 한 가지 작업을 하도록 설계되었다. 멀티 코어나 멀티 프로세서 컴퓨터들은 여러 개의 처리 요소(CPU 등)을 한 기기에 탑재하고 작업한다.
  • 병렬 컴퓨팅(parallel computing) 또는 병렬 연산은 동시에 많은 계산을 하는 연산의 한 방법이다. 크고 복잡한 문제를 작게 나눠 동시에 병렬적으로 해결하는 데에 주로 사용되며, 병렬 컴퓨팅에는 여러 방법과 종류가 존재한다. 그 예로, 비트 수준, 명령어 수준, 데이터, 작업 병렬 처리 방식 등이 있다. 병렬 컴퓨팅은 오래전부터 주로 고성능 연산에 이용되어 왔으며, 프로세서 주파수 의 물리적인 한계에 다가가면서 문제 의식이 높아진 이후에 더욱 주목받게 되었다. 최근 컴퓨터 이용에서 발열과 전력 소모에 대한 관심이 높아지는 것과 더불어 멀티 코어 프로세서를 핵심으로 컴퓨터 구조에서 강력한 패러다임으로 주목받게 되었다.병렬 컴퓨터들은 대체적으로 하드웨어의 병렬화 방법에 따라 분류된다. 클러스터, MPP, 그리드는 여러 컴퓨터에서 한 가지 작업을 하도록 설계되었다. 멀티 코어나 멀티 프로세서 컴퓨터들은 여러 개의 처리 요소(CPU 등)을 한 기기에 탑재하고 작업한다.
rdfs:label
  • 병렬 컴퓨팅
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of