궤도 운동(軌道-)은 어떠한 물체가 중력 또는 전자기력 등에 의해 움직임을 구속받아 다른 물체 주위를 도는 현상을 의미한다. 이 때, 물체가 움직이는 길을 궤도(軌道, 문화어: 자리길)라고 한다. 물리학에서 궤도 운동이란 한 물체가 한 점이나 다른 물체 주위를 자연스럽게 곡선으로 도는 현상을 말한다. 예를 들면 별 주위의 행성의 중력 궤도 운동을 말한다. 역사적으로 행성의 겉보기 운동은 처음으로 여러 원운동을 합친 주전원 형식으로 이해했었다. 이는 아주 잘맞는 행성의 궤도 예언이었다. 케플러 시대에 비로소 행성의 궤도는 실질적으로 타원 운동이라는 것을 밝혀냈다. 아이작 뉴턴은 이것을 역제곱 법칙을 통해 해결하였고 동시적으로 거기에 해당하는 힘은 중력이라 불리며 널리 퍼졌다. 아인슈타인은 후에 일반 상대성이론을 이용해 중력이 시공간을 휘게 만들고, 궤도는 그 위에 놓여있다고 설명했다. 이는 현재 가장 정확하다고 여겨지는 이론이다.

PropertyValue
dbpedia-owl:abstract
  • 궤도 운동(軌道-)은 어떠한 물체가 중력 또는 전자기력 등에 의해 움직임을 구속받아 다른 물체 주위를 도는 현상을 의미한다. 이 때, 물체가 움직이는 길을 궤도(軌道, 문화어: 자리길)라고 한다. 물리학에서 궤도 운동이란 한 물체가 한 점이나 다른 물체 주위를 자연스럽게 곡선으로 도는 현상을 말한다. 예를 들면 별 주위의 행성의 중력 궤도 운동을 말한다. 역사적으로 행성의 겉보기 운동은 처음으로 여러 원운동을 합친 주전원 형식으로 이해했었다. 이는 아주 잘맞는 행성의 궤도 예언이었다. 케플러 시대에 비로소 행성의 궤도는 실질적으로 타원 운동이라는 것을 밝혀냈다. 아이작 뉴턴은 이것을 역제곱 법칙을 통해 해결하였고 동시적으로 거기에 해당하는 힘은 중력이라 불리며 널리 퍼졌다. 아인슈타인은 후에 일반 상대성이론을 이용해 중력이 시공간을 휘게 만들고, 궤도는 그 위에 놓여있다고 설명했다. 이는 현재 가장 정확하다고 여겨지는 이론이다.
dbpedia-owl:wikiPageID
  • 9544 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 15235 (xsd:integer)
  • 15251 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 32 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 11717734 (xsd:integer)
  • 14571197 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ko:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 궤도 운동(軌道-)은 어떠한 물체가 중력 또는 전자기력 등에 의해 움직임을 구속받아 다른 물체 주위를 도는 현상을 의미한다. 이 때, 물체가 움직이는 길을 궤도(軌道, 문화어: 자리길)라고 한다. 물리학에서 궤도 운동이란 한 물체가 한 점이나 다른 물체 주위를 자연스럽게 곡선으로 도는 현상을 말한다. 예를 들면 별 주위의 행성의 중력 궤도 운동을 말한다. 역사적으로 행성의 겉보기 운동은 처음으로 여러 원운동을 합친 주전원 형식으로 이해했었다. 이는 아주 잘맞는 행성의 궤도 예언이었다. 케플러 시대에 비로소 행성의 궤도는 실질적으로 타원 운동이라는 것을 밝혀냈다. 아이작 뉴턴은 이것을 역제곱 법칙을 통해 해결하였고 동시적으로 거기에 해당하는 힘은 중력이라 불리며 널리 퍼졌다. 아인슈타인은 후에 일반 상대성이론을 이용해 중력이 시공간을 휘게 만들고, 궤도는 그 위에 놓여있다고 설명했다. 이는 현재 가장 정확하다고 여겨지는 이론이다.
rdfs:label
  • 궤도
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of